تحلیل دقت و عدم قطعیت مدل های هوشمند در پیش بینی ضریب انتشار طولی رودخانه ها

نویسندگان

عباس اکبرزاده

روح اله نوری

اشکان فرخ نیا

امیر خاکپور

محمد سلمان صباحی

چکیده

پیش بینی دقیق ضریب انتشار طولی در رودخانه های طبیعی تا حد بسیار زیادی در تعیین توزیع غلظت آلاینده ها در چنین محیط هایی مؤثر است. عدم قطعیت موجود در نتایج به دست آمده از مدل های پیش بینی می تواند در تصمیم گیری های مناسب برای برخورد با مواد آلاینده در رودخانه ها تأثیر منفی داشته باشد. به همین دلیل، تحلیل و تعیین عدم قطعیت مدل های مورد استفاده برای پیش بینی این پارامتر بسیار مفید است. در این تحقیق با توجه به اهمیت این امر، با استفاده از مدل های شبکه عصبی (ann) و نروفازی تطبیقی (anfis)، ابتدا مدل مناسب برای پیش بینی ضریب انتشار طولی در رودخانه های طبیعی ارائه گردید و در ادامه تحلیل عدم قطعیت دو مدل مذکور بر مبنای روش مونت-کارلو انجام شد. برای این منظور از اطلاعات هیدرولیکی و هندسه جریان استفاده گردید. نتایج این تحقیق بیانگر این مطلب بود که اگرچه مدل ann در پیش بینی ضریب انتشار طولی دارای عملکرد خوبی است، اما نتایج این مدل با عدم قطعیت زیادی همراه است. با مقایسه نتایج به دست آمده از تحلیل عدم قطعیت دو مدل ann و anfis مشخص گردید که مدلanfis  نسبت به مدل ann از عدم قطعیت کمتری برخوردار است و از این لحاظ بر مدل ann برتری دارد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تحلیل دقت و عدم قطعیت مدل‌های هوشمند در پیش‌بینی ضریب انتشار طولی رودخانه‌ها

پیش‌بینی دقیق ضریب انتشار طولی در رودخانه‌های طبیعی تا حد بسیار زیادی در تعیین توزیع غلظت آلاینده‌ها در چنین محیط‌هایی مؤثر است. عدم قطعیت موجود در نتایج به‌دست آمده از مدل‌های پیش‌بینی می‌تواند در تصمیم‌گیری‌های مناسب برای برخورد با مواد آلاینده در رودخانه‌ها تأثیر منفی داشته باشد. به‌همین دلیل، تحلیل و تعیین عدم قطعیت مدل‌های مورد استفاده برای پیش‌بینی این پارامتر بسیار مفید است. در این تحقیق...

متن کامل

تحلیل عدم قطعیت مدل های شبکه عصبی و نروفازی در پیش بینی جریان رودخانه

پیش بینی آورد رودخانه در مدیریت منابع آب از اهمیت فراوانی برخوردار است، اما به دلیل عدم قطعیت بالا در عواملی که فرآیند بارش- رواناب را سبب می‌گردند، همواره با مشکلاتی همراه بوده است. یکی از روش‌هایی که می‌تواند این مشکل را تا حدی کاهش دهد، تحلیل‌ عدم قطعیت پیش‌بینی‌های انجام شده می‌باشد. این تحلیل‌ها در مدل‌های آماری سابقه طولانی دارند، ولی برای مدل‌های شبکه عصبی و نروفازی کمتر مورد استفاده قرا...

متن کامل

تحلیل عدم قطعیت مدل سیستم استنتاج فازی در پیش بینی ضریب هدایت هیدرولیکی خاک اشباع

تعیین و پیش­بینی میزان هدایت هیدرولیکی خاک در شرایط اشباع اهمیت ویژه­ای در مسایل و طراحی­های مرتبط با فیزیک خاک دارد. در این میان برآورد و تخمین آن با استفاده از داده­های موجود آسان توسعه زیادی پیدا کرده که از آن جمله استفاده از سیستم­های خبره پیش از پیش کاربرد داشته است. شاید مدل ROSETTA قدیمی­ترین مدل مذکور باشد در این میان سیستم استنتاج فازی نیز بدلیل پیچیدگی­ها و صرف هزینه و وقت کمتر کاربرد...

متن کامل

پیش بینی ضریب انتشار طولی در رودخانه های طبیعی با مدل توسعه یافته شبکه عصبی

هدف اصلی این مقاله پیش بینی ضریب انتشار طولی در رودخانه های طبیعی با استفاده از مدل توسعه داده شده شبکه عصبی مصنوعی بر مبنای توابع آموزش شبه-نیوتنی بود. به این منظور از اطلاعات هیدرولیکی و هندسه جریان استفاده گردید. مجموع کل اطلاعات مورد استفاده در این تحقیق، 100 سری داده بود که به سه دسته آموزش، دسته نظارت بر آموزش و دسته آزمایش تقسیم شد. در این تحقیق، ابتدا با دیدی انتقادی به مرور برخی از مهم...

متن کامل

تحلیل عدم قطعیت مدل های شبکه عصبی و نروفازی در پیش بینی جریان رودخانه

پیش بینی آورد رودخانه در مدیریت منابع آب از اهمیت فراوانی برخوردار است، اما به دلیل عدم قطعیت بالا در عواملی که فرآیند بارش- رواناب را سبب می گردند، همواره با مشکلاتی همراه بوده است. یکی از روش هایی که می تواند این مشکل را تا حدی کاهش دهد، تحلیل عدم قطعیت پیش بینی های انجام شده می باشد. این تحلیل ها در مدل های آماری سابقه طولانی دارند، ولی برای مدل های شبکه عصبی و نروفازی کمتر مورد استفاده قرار...

متن کامل

تحلیل عدم قطعیت مدل سیستم استنتاج فازی در پیش بینی ضریب هدایت هیدرولیکی خاک اشباع

تعیین و پیش­بینی میزان هدایت هیدرولیکی خاک در شرایط اشباع اهمیت ویژه­ای در مسایل و طراحی­های مرتبط با فیزیک خاک دارد. در این میان برآورد و تخمین آن با استفاده از داده­های موجود آسان توسعه زیادی پیدا کرده که از آن جمله استفاده از سیستم­های خبره پیش از پیش کاربرد داشته است. شاید مدل rosetta قدیمی­ترین مدل مذکور باشد در این میان سیستم استنتاج فازی نیز بدلیل پیچیدگی­ها و صرف هزینه و وقت کمتر کاربرد...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
فصلنامه علمی- پژوهشی آب و فاضلاب

ناشر: مهندسین مشاور طرح و تحقیقات آب و فاضلاب

ISSN 1024-5936

دوره 21

شماره 3 2010

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023